Theranostic magnetic siRNA nanocarriers as a novel approach in breast cancer diagnosis and treatment

Appel à projets PAIR Sein 2014 - ARC_INCa_LNCC_7636

Project feedback

Stephanie DAVID

Journée Recherche Cancer du sein

24 Janvier 2020
Theranostic magnetic siRNA nanocarriers (TS-MSN) as a novel approach in breast cancer diagnosis and treatment

Coordinator: Dr. Stephanie DAVID
Duration: 36 months (2014 – 2017)
Funding: 382 k€

Project overview

Targeted stealth MSN (TS – MSN)

Theranostic hybrid magnetic nanovectors

Antibody fragments

MRI on small animals

Team 1: NMNS - Tours
Scientific coordinator S. David
6 PR + 1 PF (2 years)

Team 2: IPVBAI - Tours
Scientific coordinator N. Aubrey
3 PR + 1 PF (1 year)

Team 3: CBM - Orléans
Scientific coordinator S. Même
2 PR

UMR Université INRA ISP 1282 Immunologie Parasitaire, Vaccinologie et Biothérapie Antiinfectieuse,
Université de Tours (I. Dimier-Poisson)

UPR 4301 IRM, Signaux, images et expression des gènes,
Centre de Biophysique Moléculaire, CNRS, Orléans (E. Jakob-Toth)

Coordinator: Dr. Stephanie DAVID
Project feedback, Paris 24/01/20 – S. DAVID

FA 6795
Nanomédicaments et Nanosondes (NMNS)
Breast Cancer

- first cause of mortality per cancer in women population

HER2+ Breast Cancer

Resistance to classical chemotherapy treatments

Monoclonal antibody Herceptin® (trastuzumab)
- Actually used with adjuvant chemotherapy (after surgery)

Ma et al., 2018
Gene silencing using small interfering RNA as therapeutic approach for (breast) cancer

Scientific context

Objectives

Results

Feedback

Conclusion

Perspectives

Theranostic magnetic siRNA nanocarriers as a novel approach in breast cancer diagnosis and treatment

Project feedback, Paris 24/01/20 – S. DAVID
Nanovectors for improved gene silencing

Scientific context

Objectives

Results

Feedback

Conclusion

Perspectives

Protection from enzymatic degradation

Stealthiness

Accumulation in tumor site

Internalization

Endosomal escape

Blood vessel

Enzymes

siRNA nanovector

siRNA

mRNA translation

Ben Djemaa et al., IJP 2019

Efficient down-regulation

Cancer cell

Lysosome

Nucleus

i.v. injection

Tumor

Nanovectors for improved gene silencing

Theranostic magnetic siRNA nanocarriers as a novel approach in breast cancer diagnosis and treatment

Project feedback, Paris 24/01/20 – S. DAVID

FA 6795
Nanomédicaments et Nanosondes (NMNS)
Theranostic magnetic siRNA nanocarriers as a novel approach in breast cancer diagnosis and treatment

Project feedback, Paris 24/01/20 – S. DAVID

Magnetic siRNA nanovectors (MSN)

Scientific context

Objectives

Results

Feedback

Conclusion

Perspectives

Magnetic siRNA nanovectors (MSN)

David et al., IJP, 2013

SPION: superparamagnetic iron oxide nanoparticle
Diagnosis and treatment of HER2+ breast cancer

Theranostic magnetic siRNA nanocarriers as a novel approach in breast cancer diagnosis and treatment

Team 1: NMNS - Tours
Scientific coordinator S. David

Team 2: IPVBAI - Tours
Scientific coordinator N. Aubrey

Team 3: CBM - Orléans
Scientific coordinator S. Même

TS-MSN = targeted stealth magnetic siRNA nanovector, **SPION** = Superparamagnetic iron oxide nanoparticles, **siRNA** = small interfering RNA

Scientific context

Objectives

Results

Feedback

Conclusion

Perspectives

Diagnosis and treatment of HER2+ breast cancer

- TS-MSN
- Drug (siRNA) carriers → therapeutic action
- Imaging agents (SPION) → diagnostic action

Team 1: NMNS - Tours

Scientific coordinator: S. David

Team 2: IPVBAI - Tours

Scientific coordinator: N. Aubrey

Team 3: CBM - Orléans
Scientific coordinator: S. Même

HER2 targeting

MRI on small animals

TS-MSN

- Targeted stealth magnetic siRNA nanovector

SPION

- Superparamagnetic iron oxide nanoparticles

siRNA

- Small interfering RNA

MRI

- Magnetic resonance imaging on small animals

Single chain variable Fragment (scFv)

- HER2-targeting

Herceptin® (trastuzumab)
Theranostic magnetic siRNA nanocarriers as a novel approach in breast cancer diagnosis and treatment

Project objectives

Scientific context

Objectives

Results

Feedback

Conclusion

Perspectives

Project objectives

Formulation of TS-MSN and its optimization

Specific targeting of HER2+ breast cancer cells

Validation of the “theranostic” concept (therapeutic effect + MRI contrast) in vivo

Therapeutic effect due to the action of siRNA on the protein synthesis
Theranostic magnetic siRNA nanocarriers as a novel approach in breast cancer diagnosis and treatment

Project feedback, Paris 24/01/20 – S. DAVID

Results - overview

Stealth magnetic nanocarriers of siRNA as platform for breast cancer therapeutics

J. Brunioux, S. Ben Djerzaa, K. Hervé-Aubert, H. Marchais, I. Chourpa, S. David

Magnetic nanocarriers for the specific delivery of siRNA: Contribution of breast cancer cells active targeting for down-regulation efficiency

J. Brunioux, E. Allard-Vannier, N. Aubry, Z. Lakhdar, S. Ben Djerzaa, S. Elpak, H. Marchais, K. Hervé-Aubert, I. Chourpa, S. David

FA 6795
Nanomédicaments et Nanosondes (NMNS)
Theranostic magnetic siRNA nanocarriers as a novel approach in breast cancer diagnosis and treatment

Project feedback, Paris 24/01/20 – S. DAVID

Scientific context

Objectives

Results

Feedback

Conclusion

Perspectives

Stealth magnetic siRNA nanovectors

Covalent grafting

Stealth MSN (S-MSN) + PEG + SPION+ + FPIR

Gene silencing efficiency

GFP cell culture model

MDA-MB231/GFP

S-MSN_1 (with chitosan)

Bruniaux et al., IJP, 2017

SPION+: silanized SPION, PEG: polyethylene glycol, FPIR: near infrared fluorochrome, SFP: stealth fluorescent nanoparticles

Gene silencing efficiency

Colloidal stability in complete culture medium

DMEM 10% FBS

Incubation at 37°C

Stability > 4h

Alric et al, 2018

SFP

Bruniaux et al., IJP, 2017
Addition of poly-L-arginine in the formulation

\[[\text{siGFP}] = 20 \text{ nM}\]
72h transfection on MDA-MB231/GFP

Scientific context
Objectives
Results
Feedback
Conclusion
Perspectives

Oligofectamine®
S-MSN_1 (with chitosan)
S-MSN_2 (with PLR)
S-MSN_3 (with chitosan & PLR)

\[\text{CHITOSAN}\]
\[\text{POLY-L-ARGININE}\]

\[\text{pK}_a = 6.5\]
\[\text{pK}_a > 12\]

\[\text{pH}_{\text{culture media}} = 7.4\]

\[\rightarrow\] Need of both polymers for an efficient gene silencing \textit{in vitro}.

\[\text{siCtrl transfection}\]
\[\text{siGFP transfection}\]

Bruniaux \textit{et al.}, \textit{IJP}, 2017

Theranostic magnetic siRNA nanocarriers as a novel approach in breast cancer diagnosis and treatment

Project feedback, Paris 24/01/20 – S. DAVID

FA 6795
Nanomédicaments et Nanosondes (NMNS)
Results - overview

Scientific context

Objectives

Results

Feedback

Conclusion

Perspectives

Theranostic magnetic siRNA nanocarriers as a novel approach in breast cancer diagnosis and treatment

Project feedback, Paris 24/01/20 – S. DAVID
Targeted stealth magnetic siRNA nanovectors (TS-MSN)

Scientific context

Objectives

Results

Feedback

Conclusion

Perspectives

Monoclonal antibody
Herceptin®
(trastuzumab)

\[\text{TSFP: targeted stealth fluorescent nanoparticles, TS-MSN: targeted stealth magnetic siRNA nanovectors} \]

Protection

- 1% agarose gel
- Heparin 10 mg/mL: used for complexes destabilisation
- RNAse A: 2 ng / incubation at 37°C / inactivation during 30' at 70°C

** TEAM 2: IPVBAl - Tours**

Scientific coordinator N. Aubrey

Protections

- siRNA integrity > 95%

Bruniaux et al., IJP, 2019

FA 6795
Nanomédicaments et Nanosondes (NMNS)

Theranostic magnetic siRNA nanocarriers as a novel approach in breast cancer diagnosis and treatment

Project feedback, Paris 24/01/20 – S. DAVID
Specific targeting of HER2+ breast cancer cells

Scientific context

Objectives

Results

Feedback

Conclusion

Perspectives

Theranostic magnetic siRNA nanocarriers as a novel approach in breast cancer diagnosis and treatment

Project feedback, Paris 24/01/20 – S. DAVID

Specific targeting of HER2+ breast cancer cells

Co-culture experiment to verify the specific targeting of HER2+ cells

- Enhanced uptake of TS-MSN in HER2+ BC cells for long incubation times (24h and 48h).

Bruniaux et al., IJP, 2019

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context

Specific targeting of HER2+ breast cancer cells

Scientific context
Gene silencing

Survivin inhibition (HER2- cells)

Survivin (16 kDa)
Survivin siRNA
GAPDH (37 kDa)
- - - - - - -
15% 70% 70%
Inhibition

Survivin inhibition (HER2+ cells)

Survivin (16 kDa)
Survivin siRNA
GAPDH (37 kDa)
- - + - + - +
15% 70% 90%
Inhibition

Western Blot experiments to verify the inhibition of the protein synthesis

Enhanced gene silencing in HER2+ BC cells.

Bruniaux et al., IJP, 2019

Theranostic magnetic siRNA nanocarriers as a novel approach in breast cancer diagnosis and treatment
Project feedback, Paris 24/01/20 – S. DAVID

Scientific context
Objectives
Results
Feedback
Conclusion
Perspectives
TS-MSN administration in mice

TS-MSN biodistribution by MRI

Balb/c nude mice – BT474 injection after 9 weeks

Optimised FLASH-T2* – axial section

1.1 mg/kg siSurv. (eq. 1.67 g/L iron) – 2 IV injection

Injection #1: n=4

Injection #2: n=3

Orthotopic HER2 breast cancer mouse model

→ TS-MSN accumulation in the tumor can be followed by MRI.
Theranostic magnetic siRNA nanocarriers as a novel approach in breast cancer diagnosis and treatment

Project feedback, Paris 24/01/20 – S. DAVID

Scientific context
Objectives
Results
Feedback
Conclusion
Perspectives

Hurdles

- Administrative procedures of the university
- People management
- Project time management
- Employment

Positive points

- Post-doctoral fellowship dedicated 100% to the project
- New breast cancer models
- Achievement of objectives
- Reports
- Funding
- Reinforced collaborations
- New nanovectors
- New expertise

Achievement of objectives

- Positive points

People management

Right person for the right job!

First project

FA 6795
Nanomédicaments et Nanosondes (NMNS)
Theranostic magnetic siRNA nanocarriers as a novel approach in breast cancer diagnosis and treatment
Project feedback, Paris 24/01/20 – S. DAVID

Scientific context

Objectives

Results

Feedback

Conclusion

Perspectives

Conclusion

Project objectives

Valorization of the results

New biological models, equipment and expertise

→ Development of targeted stealth magnetic siRNA nanovectors

→ Formulation of TS-MSN and its optimization

→ Specific targeting of HER2+ breast cancer cells

→ Therapeutic effect due to the action of siRNA on the protein synthesis

→ Validation of the "theranostic" concept (therapeutic effect + MRI contrast) in vivo

→ Valorization of the results

MITO-MSN
HER2 receptor

MDA-MB231/GFP
BT-474

Agarose gel electrophoresis
Western Blot

Gel / Blot imaging system
Spectrofluorimeter

Cell incubator

Scientific context

Objectives

Results

Feedback

Conclusion

Perspectives

Project objectives

Valorization of the results

New biological models, equipment and expertise

→ Development of targeted stealth magnetic siRNA nanovectors

→ Formulation of TS-MSN and its optimization

→ Specific targeting of HER2+ breast cancer cells

→ Therapeutic effect due to the action of siRNA on the protein synthesis

→ Validation of the "theranostic" concept (therapeutic effect + MRI contrast) in vivo

→ Valorization of the results

MITO-MSN
HER2 receptor

MDA-MB231/GFP
BT-474

Agarose gel electrophoresis
Western Blot

Gel / Blot imaging system
Spectrofluorimeter

Cell incubator
Theranostic magnetic siRNA nanocarriers as a novel approach in breast cancer diagnosis and treatment
Project feedback, Paris 24/01/20 – S. DAVID

Scientific context

Objectives

Results

Feedback

Conclusion

Perspectives

Perspectives

Optimization of the TS-MSN formulation
- PEG corona for better biodistribution *(PhD V. Nguyen)*
- Simplify production for scale-up

Confirmation of the therapeutic effect of TS-MSN
- Gene silencing confirmation at other levels (mRNA, apoptosis) *(PhD S. Ben Djemaa, S. Eljack)*
- Therapeutic effect *in vivo*

Enhancement of the therapeutic effect of TS-MSN
- Combination of different siRNA sequences and/or siRNA + chemotherapy *(PhD S. Eljack)*
- Application of an external magnetic field (magnetic guidance, magnetic hyperthermia)
… for financial support
- L’institut national du Cancer (INCa)
- La Ligue contre le cancer (LNCC)
- Fondation ARC pour la recherche sur le cancer (ARC)

… for collaborations
EA 6295 Nanomédicaments et Nanosondes (Tours)
UMR Université INRA ISP 1282 IPVBAI (Tours)
UPR 4301 IRM, CBM, CNRS (Orléans)

Any questions?