The role of Toll Like Receptor 9 (TLR9) in breast cancer

Uzma Hasan (CIRI Lyon) & Nathalie Bendriss-Vermare (CRCL, Lyon)
TLR9 dsDNA

FACTS on TLR9

Highly expressed on immune cells (pDC and B cells human)

Weakly expressed on epithelial cells (skin and cervix human)

Activated by dsDNA

Expressed in the ER - shifts to endosome

Breast cancer ¹

Immune system

Cellular transformation
TLR9 pivotal in immune responses and cell cycle control

Immune response 1, 2, 3, 4
Type I IFN by pDC

Oncogenic stress 5, 6, 7, 8

5. **Proliferation**, Colorectal cancer, Si Ming Man *et al.*, Cell 2015
Question

Role of TLR9 in Breast Cancer?

Methods

5 WPs

Objective 1. TLR9 expression
Cohort (Kings College London)

Objective 2. Mechanism
BC human *in vitro and ex vivo* models

Objective 3. Mechanism
BC murine *in vivo* models
TLR9 in BC tumour cells

[Image of histological section with labels: Tu (tumor), TME (tumor microenvironment).]

TLR9 tumor
Team 1 UH
KCL

TLR9 pDC
TEAM 2 NVB
TEAM 3 OT
Objective 1. TLR9 expression
Cohort (Kings College London)

30 sections

Normal tissue score =1
DCIS /Invasive tissue =0

Levels of TLR9 expression

NORMAL vs. DCIS_INVASIVE logistic regression model
odds ratio = 0.16 (normal is the reference)
TLR9 expression is blocked in several virus-induced cancers

Ex vivo

NORMAL vs. DCIS_INVASIVE: logistic regression model
odds ratio = 0.16 (normal is the reference)

In vitro

RESULTS

http://www.broadinstitute.org/ccle/home
http://brainarray.mbnl.med.umich.edu/Brainarray/Database/
Objective 2.
Mechanism

BC human in vitro models

• Proliferation: colony assay

• SASP (Senescence-Associated Secretory Phenotype)

• Tumour suppressor
RESULTS: Proliferation is blocked by TLR9 in breast cancer cells

TLR9

M361TLR7

10
100
1000

Dox

TLR9

Dox

TLR7

% of S-G2 phase

-DOX

+DOX

0
10
100
1000

Time (d)

Cumulative cell number

-TLR

+TLR

-TLR7

+TLR7

Dox

Dox

Dox

Dox
RESULTS: TLR9 induces tumour suppressors and SASP

DNA damage, hypoxia, cellular stress, oncogene, radiation, other factors ...

- +. DOX

p53
p16
actin

p16INK4a
p21cip

CDK dependent

Stop cell cycle

Cell senescence

β-gal

TLR9 +

IL-6 IL-8

CXCL-1

No dox
Dox

5% CO2 à 37°C
3 jours

Cytokines

Expression of tumour suppressors
DNA damage, hypoxia, cellular stress, oncogene, radiation, other factors ...

p53
p16
actin

p16INK4a
p21cip

CDK dependent

Stop cell cycle

Cell senescence

β-gal

TLR9 +

IL-6 IL-8

CXCL-1

No dox
Dox

5% CO2 à 37°C
3 jours

Cytokines

Expression of tumour suppressors
CONCLUSIONS and next steps

- **Senescence**
- **Slow down in cell cycle**
TLR9 immunity in BC
pDC are specialized in antiviral responses via type I IFN production.
pDC at the center of an immunosuppressive microenvironment in breast and ovarian cancers

Premalignant lesion → Advanced oncogenesis → Tumor growth

Elimination → Immuno-surveillance

Equilibrium → Immuno-selection

Escape → Immuno-subversion

Inhibitory and non-IFN-I inducing endogenous activating stimuli

IFN-α

Treg expansion

Th2 differentiation

Labidi-Galy et al, Can Res 2011
Sisirak et al, Can Res 2012
Faget, Can Res 2012
Sisirak et al, Int J Cancer 2013
Ghirelli et al, Can Res 2015
Do pDC play a dual role in breast cancer immunity?

Any role for pDC and type I IFNs?

IFN-α producing TApDC

Inhibitory and non-IFN-I inducing endogenous activating stimuli

Elimination

Premalignant lesion

Advanced oncogenesis

Tumor growth

Equilibrium

Immuno-surveillance

Immuno-selection

Immuno-subversion

Tumor cells

pDC

Altered TApDC

Labidi-Galy et al, Can Res 2011
Sisirak et al, Can Res 2012
Faget, Can Res 2012
Sisirak et al, Int J Cancer 2013
Ghirelli et al, Can Res 2015
Do pDC play a dual role in breast cancer immunity? What is the role for TLR9?

- Premalignant lesion
- Advanced oncogenesis
- Tumor growth

Elimination → Immuno-surveillance → IFN-α → IFN-α producing TApDC

Equilibrium → Immuno-selection

Escape → Immuno-subversion

TLR9?

Any role for pDC and type I IFNs?

Inhibitory and non-IFN-I inducing endogenous activating stimuli

IFN-α

Treg expansion

Th2 differentiation

Labidi-Galy et al, Can Res 2011
Sisirak et al, Can Res 2012
Faget, Can Res 2012
Sisirak et al, Int J Cancer 2013
Ghirelli et al, Can Res 2015
Objective 1. TLR9 expression

Cohort (Kings College London and CLB, Lyon)

TLR9 is strongly expressed in the microenvironment of human breast tumors

Vey, Mussard et al, in preparation
Do pDC play a dual role in breast cancer immunity? What is the role for TLR9?

Diagram:
- Premalignant lesion → Advanced oncogenesis → Tumor growth
- **Elimination** → **Equilibrium** → **Escape**
- **Immuno-surveillance** → **Immuno-selection** → **Immuno-subversion**
- TLR9?

- TLR9 inducing endogenous activating stimuli
- Inhibitory and non-IFN-I inducing endogenous activating stimuli
- IFN-α, Treg expansion, Th2 differentiation
- Labidi-Galy et al, Can Res 2011
- Sisirak et al, Can Res 2012
- Faget, Can Res 2012
- Sisirak et al, Int J Cancer 2013
- Ghirelli et al, Can Res 2015
BAD-LAMP controls TLR9 trafficking and signaling in human pDC

Objective 2. Mechanism
BC human *in vitro* and *ex vivo* models

BAD-LAMP & TLR9

NS 1h CpGA 24h CpGA

BAD-LAMP downmodulation

BAD-LAMP overexpression

Combes et al, Nature Communications 2017
BAD-LAMP expression is enhanced in breast tumor pDCs and its downregulation is prevented by inhibitory tumor supernatants.

Objective 2.
Mechanism

BC human *in vitro* and *ex vivo* models

A Blood patients’ pDC

B Breast Tumor pDC

Combes et al, Nature Communications 2017
Do pDC play a dual role in breast cancer immunity? What is the role for TLR9?

Any role for pDC and type I IFNs?

IFN-α producing TApDC

[pDC] Tumor cells

neutrophil

TLR9?
Objective 2.
Mechanism

BC human in vitro and ex vivo models

Vey, Mussard et al, in preparation
Evidence for the activation of type I IFN pathway in human breast tumors

Vey, Mussard et al, in preparation
Endogenous TLR agonists are present in breast tumors and are able to activate or potentiate pDC activation in vitro.

Objective 2. Mechanism

BC human in vitro and ex vivo models
Conclusion and next steps

• **Further characterize the intratumor endogenous TLR ligands**
 - Mitochondrial DNA vs Genomic DNA
 - Demonstrate the role of TLR

• **Further characterize immune infiltrate and immune pathways (TLR9, IFN) dominating in early breast cancers versus invasive breast cancers in patients**

• **Demonstrate the role of pDC and neutrophils in breast tumor immunosurveillance in vivo by depleting experiments**

Joint conclusion

TLR9 tumor
Team 1 UH KCL
- Expression is lost tumour cells
- Slows down proliferation
- Induces senescence

TLR9 in BC

TLR9 TME
TEAM 2 NVB TEAM 3 OT
- Strong expression in tumor pDC
- Activation blocked by BAD-LAMP
- Endogenous ligands are present in BC

Figure 3 - uploaded
Ahmad
Content may be subject to copyright.
Christophe Caux
Nelly Vey
Julie Mussard
Aurélien Voissière

CLB
Clinicians and patients
Biological ressources center
Platforms

Philippe Pierre
Evelina Gatti
Alexis Combes

Tony Ng
Greg Weitsmann
Trupti Pai
Cheryl Gillet
Natalie Woodman

Maire Marotel
Michelle Ainouze
Guillaume Roblot
Kyohei Yamanaka
Salome Amouyal
Omran Allatif
2nd International Symposium on
Immune Responses in Cancer and Infection

June 8th - 10th, 2020
Lyon, France

Places are limited! Early bird fees until 31/03/2020: 280 € / 150 € for students!

Confirmed Invited Speakers

KEYNOTE LECTURES
Pr. Harald Zur Hausen, Germany
Pr. Ruslan Medzhitov, USA

Ido Amit, Israel
Esteban Ballestar, Spain
Antonio Bertoletti, Singapore
Menna Clatworthy, UK
Julie Dechanet-Merville, France
Sandra Diebold, UK

Eran Elinav, Israel
Nelson Gekara, Sweden
Thomas Gajewski, USA
Ping-Chih Ho, Switzerland
Jonathan Kagan, USA
Mansun Law, USA

Dan Littman, USA
Mala Maini, UK
Frederica M-Berg, UK
Anne Puel, France
John Wherry, USA

Thematic sessions

1. Innate Immunity
2. Immuno-metabolism
3. Immunotherapy and clinics
4. Microbiota
5. Genetics and Epigenetics
6. Oncopathogens and immune responses

To register go to: www.irci2020.insight-outside.fr